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Abstract

The objective of this paper is to uncover the determinants of trading intensity in futures

markets. In particular, the time between adjacent transactions (referred to as transaction du-

ration) on the FTSE 100 index futures market is modeled using various augmentations of

the basic autoregressive conditional duration (ACD) model introduced by Engle and Russell

[Econometrica 66 (1998) 1127]. The definition of transaction duration used in this paper is an

important variable as it represents the inverse of instantaneous conditional return volatility.

As such, this paper can also be viewed as an investigation into the determinants of (the inverse

of) instantaneous conditional return volatility. The estimated parameters from various ACD

models form the basis of the hypothesis tests carried out in the paper. As predicted by various

market microstructure theories, we find that bid–ask spread and transaction volume have a

significant impact upon subsequent trading intensity. However, the major innovation of this

paper is the finding that large (small) differences between the market price and the theoretical

price of the futures contract (referred to as pricing error) lead to high (low) levels of trading

intensity in the subsequent period. Moreover, the functional dependence between pricing error

and transaction duration appears to be non-linear in nature. Such dependence is implied by

the presence of arbitragers facing non-zero transaction costs. Finally, a comparison of the

forecasting ability of the various estimated models shows that a threshold ACD model pro-

vides the best out-of-sample performance.
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1. Introduction

Accurate forecasts of the conditional volatility of asset returns is of extreme im-

portance in the areas of risk management and option pricing. In the former, the

concept of Value-at-Risk (VaR) has become a widely used method for measuring
the market risk of portfolios. It is defined as the tolerable amount of capital that

can be lost in the next period for a given predetermined probability. Clearly an

accurate forecast of volatility is important here if the solvency of the portfolio

owner is to be maintained. Likewise, as the price of an option contract is a func-

tion of the volatility of the underlying asset returns, a similar degree of accuracy is

required by buyers and sellers of such contracts. Given this importance it is not

surprising that a vast literature exists concerning appropriate ways to model con-

ditional volatility.
The conventional approach to modeling conditional volatility is almost always

based on the autoregressive conditional heteroscedasticity (ARCH) model intro-

duced by Engle (1982), or one of many generalizations of this model (see Bollers-

lev (1986) and Nelson (1991), for examples within this vast literature). A common

feature of these models is that conditional volatility in the next period is a func-

tion of current and previous conditional volatility and/or the square of unex-

pected returns. In using this form of temporal dependence one necessarily

imposes restrictions concerning the sampling frequency of the data. This inevita-
bly leads to ad hoc frequency selection and thus information loss. For example,

return volatility measured at hourly intervals could imply zero return volatility

even though returns within the interval are highly volatile. At the other extreme,

selection of too high a frequency may result in many intervals with no new in-

formation and, hence, may induce various forms of heteroscedasticity into the

data. To avoid these problems the current paper makes use of various duration

models capable of modeling (the inverse of) instantaneous conditional return

volatility.
Duration models focus on the times between events and, therefore, do not im-

pose any sampling frequency assumptions. In the current context the event is de-

fined as a non-zero price impact trade on the FTSE 100 index futures market with

the times between these events being referred to as transaction duration. 1 As is

shown explicitly in Engle and Russell (1998), there exists an inverse relationship

between the conditional expectation of this type of transaction duration and in-

stantaneous conditional return volatility. This follows from basic intuition where-

by if transaction duration is expected to be low (high) then it follows that
prices are expected to change (in absolute terms) rapidly (slowly). Therefore, by

using this particular definition of transaction duration one is able to interpret

the models used as models of (the inverse of) instantaneous conditional return

volatility.
1 A non-zero price impact trade is defined as a trade which contains a price that is different from the

price observed in the previous trade.
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The exact form of the model used is based on the autoregressive conditional du-

ration (ACD) model of Engle and Russell (1998). 2 In particular, expected transac-

tion duration is assumed to be a linear function of past transaction duration, past

expected transaction duration and a set of explanatory variables thought to have

an impact on expected transaction duration as predicted by various market micro-
structure theories.

Apart from being the first application of ACD models to futures trading, the

paper innovates in two other ways: First, the set of explanatory variables is expanded

to include past mispricing between spot and futures prices (referred to as pricing

error) as implied by the cost-of-carry model. Second, the assumption of linear depen-

dence between expected transaction duration and past pricing error is relaxed. In

particular, the functional dependence between expected transaction duration and

past pricing error appears to be non-linear is nature – a result most likely caused
by arbitrage activity. In allowing for non-linear dependence, we introduce a new

class of ACD model similar in nature to the threshold ACD (TACD) model of

Zhang et al. (2001). However, the new model differs in that the threshold dependence

occurs between expected transaction duration and past pricing error and not be-

tween expected transaction duration and past transaction duration as in the TACD

model. A further related innovation is that we consider a smooth threshold version

of the ACD model with the non-linear part of the model applied to past pricing

error. This latter assumption is compatible with the observation that arbitragers face
heterogeneous transaction costs. Of all the models considered, it is the non-linear

threshold models that appear to exhibit the best out-of-sample performance.

The paper is organized as follows: the next section contains a description of the

ACD model introduced by Engle and Russell (1998) and motivates and describes

the augmented version of the ACD model considered in this paper. Section 3 con-

tains the empirical results of the paper and includes a description of the data used,

some summary statistics, results pertaining to various estimated ACD models, and a

description of the forecasting ability of the various models. Concluding remarks are
provided in the final section. An appendix is also provided containing summary in-

formation concerning details of all variables and parameters used, the models con-

sidered, the specifications of the transition functions used, and all distributions

considered.
2. Modeling duration

Before commencing with a description of the various ACD models considered in

this paper, it is worth discussing the choice of whether to model trading intensity, that

is, the number of trades per period of time or transaction duration, that is, the time

between trades. In this paper we choose to model the latter. There are two reasons for
2 See Bauwens et al. (2000), Drost and Werker (2000), Fernandes and Grammig (2000), Gerhard and

Hautsch (2000), Hafner (2000), and Zhang et al. (2001) for various applications and modifications of the

ACD model of Engle and Russell (1998).
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this choice: First, time-series models of intensity are restrictive in terms of allowable

specification. As the observations are integer-valued then one has to ensure that the

fitted dependent variables are also integer-valued. In the case of integer-valued

ARMA models (see MacDonald and Zucchini (1997) for a review of these models),

this is achieved by using the binomial thinning operator of Steutal and van Harn
(1979). However, in using this operator the likelihood functions become extremely

cumbersome making inclusion of explanatory variables almost impossible. Second,

as with the Gaussian ARMA model, there remains the problem of selecting the ap-

propriate sampling frequency. For these reasons we model transaction duration using

the ACD model of Engle and Russell (1998). This model is highly flexible in terms

of specification and does not rely on any sampling frequency assumptions.

2.1. The basic ACD model

The motivation for the ACD model is the observation that trades appear to be

clustered over time. While this clustering can occur even when trades occur randomly

over time, the degree of clustering appears to be excessive. For this reason Engle and

Russell (1998) introduce a time-series model of transaction duration similar in nature
to the ARCH specification used in the context of Gaussian-type data. 3 A major dif-

ference between ACD and ARCH-type models is that transaction duration cannot

be negatively valued. As such, alternative distributional assumptions are required.

The specification of the ACD model relies on three main assumptions, the first of

which states that
3 At

ARMA

an AR

an AR
4 En

(2001)
Yn=wn ¼ �n � i:i:d:DðjÞ; ð1Þ

where Yn is the transaction duration associated with the nth trade defined as sn � sn�1

with price impact trades occurring at times fs0; s1; . . . ; sn; . . .g, wn � E½YnjYn�1; . . . ;
Y1;wn�1; . . . ;w1� is the conditional expectation of the transaction duration for the nth
trade given past realized and expected transaction durations and D is a general

distribution over ð0;1Þ with mean equal to one and parameter vector j. The second

assumption made is that wn is a linear function of past Yn and past wn,
wn ¼ a0 þ
Xp
m¼1

amYn�m þ
Xq
m¼1

bmwn�m; ð2Þ
where up to p and q lags of Yn and wn are allowed. The final assumption concerns the

distribution of �n. As negative transaction durations cannot occur then distributions

with support over ð0;1Þ must be used. Of the many distributions available, the

exponential, the Weibull, and the generalized gamma densities have be used in this

context. 4
first glance, this particular specification may appear unusual. It may be more obvious to specify an

model of transaction duration. However, just as an ARCH model can be represented as

MA model so can the ACD model; see Eq. (17) in Engle and Russell (1998) for the specification of

MA model using the coefficients from an ACD model.

gle and Russell (1998) make use of the exponential and Weibull distribution while Zhang et al.

use a generalized gamma distribution.
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One of the advantages of using an ARCH-type specification for transaction dura-

tion is that explanatory variables (possibility real-valued in nature) can be introduced

into (2) without substantially complicating the estimation process. Therefore, in

allowing such variables, (2) becomes
5 No

enters

of the
6 Th

term s
wn ¼ a0 þ
Xp
m¼1

amYn�m þ
Xq
m¼1

bmwn�m þ h0Xn�1; ð3Þ
where Xn�1 is a vector of explanatory variables with associated parameter vector h. 5

Two innovations of this paper are to allow past pricing error into (3) and to allow

this variable to be non-linearly related to wn via various parametric transition

functions. The economic arguments concerning these innovations are described in

the following subsection.
2.2. The augmented ACD model

The first innovation of this paper involves the introduction of past pricing error

into the ACD model given by (3). The motivation for the inclusion of this variable

is based on previous studies of the relationship between futures (and spot) returns

and past pricing error (see Dwyer et al., 1996; Martens et al., 1998, and Taylor

et al., 2000 for examples). In particular, one would expect the trading intensity of ar-
bitragers to be high (low) when past pricing error is large (small) in absolute terms.

This is because the larger (smaller) the profit opportunity (as measured by the abso-

lute value of the pricing error) the larger (smaller) the intensity of trades will be such

that prices revert back to their equilibrium levels. In terms of transaction duration,

one would expect to find a negative relationship between transaction duration and

past pricing error.

As with previous studies, the pricing error considered in this paper is defined as

the difference between the market price of the futures contract and the theoretical
price implied by the cost-of-carry model. This model specifies a contemporaneous re-

lationship between spot and forward prices. 6 In the absence of arbitrage opportuni-

ties and transaction costs, we have
F �
t ¼ SterðM�tÞ �

XH
h¼1

Dhe
rðM�shÞ; ð4Þ
where t ¼ ft 2 Zþ : 16 t6 T g, F �
t is the theoretical (or fair) stock index futures price

observed at (non-stochastic) time t for delivery at time M (referred to as a t-type

event), St is the level of the index, r is the risk-free continuous interest rate applicable
te that we have imposed the restriction that only the first lagged value of the explanatory variable

(3). This is purely to economize on the degree of notation used and is relaxed in the empirical section

paper.

is model is capable of describing the relationship between spot and futures prices providing that the

tructure of interest rates is flat and constant.
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over the contract life, ðM � tÞ is the time to maturity of the futures contract and Dh

is the expected cash dividend paid at time sh where t < sh6M . 7

The trading decision rule assumed in this paper is based on the cost-of-carry

model given by (4). Arbitragers are assumed to regularly monitor the market (at a

frequency sufficient to avoid loss of information) during each of s time periods
(referred to as an s-type event), where s ¼ fs 2 Rþ : 16 s6 Tg. In particular, arbitr-

agers compare the regularly observed F �
t revealed via the spot market with the irreg-

ularly observed market value of the futures contract revealed by market makers in

the futures market. As these market makers will post bid and ask quotes around this

price we assume that the market price lies exactly halfway between these quotes. 8

Letting the bid and ask quotes of the futures contract (referred to as i-type and j-type

events, respectively), be denoted F B
si

and F A
sj
, where si ¼ fsi 2 Rþ : 16 si6 T g,

sj ¼ fsj 2 Rþ : 16 sj6 T g, i ¼ fi 2 Zþ : 16 i6 Ig, and j ¼ fj 2 Zþ : 16 j6 Jg, it
follows that
7 N

trading
8 U

made w

and as

given t

accoun
eFNsðsÞ ¼ F A
NiðsÞ þ F B

NjðsÞ

2
; ð5Þ
where NsðsÞ, NiðsÞ and NjðsÞ are the number of s-type, i-type, and j-type events that

have occurred at time s, and eFNsðsÞ denotes the market price of the futures contract as

revealed by market makers in the futures market. Using this information, arbitragers

construct the pricing error,
ZNsðsÞ ¼ ln
F �
NsðsÞeFNsðsÞ

 !
; ð6Þ
and trade accordingly. In particular, if ZNsðsÞ, is sufficiently positive (negative) then

arbitragers should buy (sell) the futures contract and sell (buy) the index. This will

imply a negative relationship between transaction duration and past absolute values

of ZNsðsÞ.
Having defined the trading rule used by arbitragers, the next stage of the analysis

involves building a model of arbitrage activity based on this rule. The conventional

method of modeling this activity is via the price process observed in the spot and fu-

tures market. This ultimately leads to the imposition of a fixed sampling interval. In
doing this, important information may be discarded as informational events within

the sampling frequency are ignored. Likewise, selection of too high a frequency will

induce severe forms of heteroscedasticity into the data. To avoid these problems, this

paper models arbitrage behaviour in the context of an ACD model. Hence, ignoring

other explanatory variables for the moment, (3) becomes
ote that F �
t is observed at non-stochastic time t because St is calculated every minute during the

day.

nder the new Connect trading system currently operating on LIFFE, a similar assumption can be

here the market price is assumed to lie exactly halfway between the prices specified in the best bid

k orders currently sitting on the limit-order book. This assumption would be perfectly reasonable

he fact that the majority of orders placed on Connect are placed by dealers trading on their own

t, i.e., marker makers.
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wn ¼ a0 þ
Xp
m¼1

amYn�m þ
Xq
m¼1

bmwn�m þ x1jZNsðsn�1Þj; ð7Þ
where ZNsðsn�1Þ represents the last available observation of pricing error at the time

of the ðn� 1Þth trade. 9

Thus far we have assumed a linear relationship between expected transaction du-

ration and the absolute value of past pricing error. In making this assumption we are

explicitly assuming that transaction costs equal zero. This is clearly an unrealistic as-

sumption. If we relax this assumption then, in the presence of proportional transac-

tion costs, c, and with no short-selling restrictions, arbitrage activity will not take

place when the following conditions holds:
jZNsðsn�1Þj6 c; ð8Þ
where c equals the sum of (i) round-trip spot and futures trading costs; (ii) market

impact costs from trading in the spot and futures markets and (iii) �stamp tax� of

0.5% which is charged when investors purchase UK equities. 10 If the no short-selling

restriction assumption is relaxed then the no arbitrage activity condition becomes
�c1 6ZNsðsn�1Þ 6 c2; ð9Þ
where c2 is expected to be greater than c1 if short-selling restrictions are imposed

on trading the underlying asset.

If the condition given by (8) (or (9)) holds then one would not expect past pricing

error to have any impact upon transaction duration. However, if it does not hold

then one would expect a dramatic decrease in transaction duration when one moves

from the condition holding to not holding (referred to as a regime switch). Indeed,

given that transaction duration cannot be negative, this decrease may be sufficiently
large such that changes in pricing error within the �profit opportunity regime� have

no impact upon subsequent transaction duration. These arguments imply that the

constant in (7) should be allowed to take different values depending on whether

(8) (or (9)) holds or not. To allow for testing of the hypothesis that past pricing error

has no impact within the two regimes, the coefficient on past pricing error is also

allowed to vary across the regimes. Thus (7) is augmented as follows:
wn ¼ ð1 � FiðZNsðsn�1ÞÞÞða0 þ x1jZNsðsn�1ÞjÞ þ FiðZNsðsn�1ÞÞða0;1 þ x1;1jZNsðsn�1ÞjÞ

þ
Xp
m¼1

amYn�m þ
Xq
m¼1

bmwn�m; ð10Þ
e have assumed that only the first lagged value of pricing error is allowed to enter (7). This is for

notation only and is relaxed in the empirical section of the paper.

rbitragers, however, can, and do, unwind their spot and futures positions before maturity (Sofianos,

eal, 1996). This is because arbitragers will close out their positions when it is profitable to do so

than at the maturity of the futures contract – unless of course it is profitable to wait for the contract

ure. Brennan and Schwartz (1988, 1990) model this behaviour as arbitragers having an option and

imately leads to a lowering in the transaction cost bound. Indeed, Dwyer et al. (1996) argue that c
nts approximately one half the total round-trip transaction costs incurred by arbitragers.
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where
11 S
F1ðZNsðsn�1ÞÞ ¼
0 if jZNsðsn�1Þj6 c;
1 otherwise;

�
ð11Þ
in the case of the no short-selling restriction model, and
F2ðZNsðsn�1ÞÞ ¼
0 if � c1 6 ZNsðsn�1Þ 6 c2;
1 otherwise;

�
ð12Þ
in the case of the short-selling restriction model. In both cases FiðZNsðsn�1ÞÞ is referred
to as the transition function with c, c1, and c2 being parameters to be estimated. To

distinguish between the two models, the former will henceforth be referred to as the

symmetric threshold model and the latter will be referred to as the asymmetric

threshold model.

The transition functions in (11) and (12) are indicator functions taking values of

zero and one depending on the value of ZNsðsn�1Þ. It could be argued that the transition

from one regime to another is actually smooth in nature, thereby allowing an infinite

number of regimes. The economic rationale for this smoothness is that arbitragers
face heterogeneous transaction costs. For instance, arbitragers facing low transac-

tion costs are likely to trade even for small (absolute) values of the pricing error.

By contrast, arbitragers facing large transaction costs will only trade when the pric-

ing error is large in absolute terms. These arguments imply that the transition func-

tion is continuous with support on [0,1]. A common assumption made in this context

is that the function has the following exponential specification: 11
F3ðZNsðsn�1ÞÞ ¼ 1 � exp
h
� dZ2

Nsðsn�1Þ

i
; ð13Þ
where d > 0 and measures the speed of transition from no impact (F3ð�Þ ¼ 0) to full

impact (F3ð�Þ ¼ 1). This model will henceforth be referred to as the smooth threshold

model.
3. Empirical results

This section contains a description of the data used, various summary statistics
associated with the variables considered, and an examination of various estimated

ACD models in terms of both in-sample and out-of-sample performance.

3.1. Data

We make use of various pieces of information concerning trades in FTSE 100 fu-

tures contracts traded on LIFFE. In addition to the pricing error series, we require

the time of the trade, the price of the trade, the bid–ask quote available at the time of
the trade, and the number of contracts traded. This information is collected for every

trade in the nearest FTSE 100 futures contract carried out between January 5 and
ee Terasvirta (1994) for more details.
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April 24, 1998. These data were obtained from LIFFE. 12 To be able to construct the

pricing error we require the (spot) level of the FTSE 100 index over this sample pe-

riod. These data were obtained from FTSE International. The trading hours of the

futures market and the spot market are, 8.35 am to 4.10 pm and 8.00 am to 4.30 pm,

respectively. 13 Thus one can obtain overlapping futures and spot data over the
period, 8.35 am to 4.10 pm.

The validity of the constructed pricing error series relies heavily on the use of ap-

propriate ex ante dividends and interest rates. To this end we make use of data sup-

plied by Goldman Sachs. These data are used by arbitragers employed by Goldman

Sachs when making judgements about the mispricing (or otherwise) of FTSE 100 fu-

tures contracts. Goldman Sachs construct ex ante dividends by making individual

forecasts for each of the dividends paid by companies in the FTSE 100 index and

then weight these by market capitalization. The interest rate applicable over the con-
tract life used by Goldman Sachs is the interpolated LIBOR rate. For instance, if

a 25 day interest rate is required then Goldman Sachs interpolate between the

two week and the four week rates.

3.2. Summary statistics

The focal point of this paper concerns the determinants of transaction duration.
Moreover, we concentrate on trades which have price impact. There are two reasons

for this. First, as described in Engle and Russell (1998), there exists an explicit rela-

tionship between the inter-arrival times of such trades, i.e., transaction duration, and

(the inverse of) instantaneous conditional return volatility. As such, the models con-

sidered can be interpreted as models of (the inverse of) instantaneous conditional re-

turn volatility. Second, by considering such trades we are able to draw inferences on

the speed of price adjustment in the futures market. Given this focus we require a

specific definition of a non-zero price impact trade. The problem here is that the
choice of what constitutes a trade with �price impact� is somewhat arbitrary. 14 We

make the simple assumption that a non-zero price impact trade is defined as a trade

containing a price that is different from the price contained in the previous trade.

This amounts to including trades with absolute price changes greater than or equal

to 0.25 index points and results in 99,399 observations.

The second issue to be addressed prior to the analysis commencing concerns the

treatment of intraday periodicity in the data. Many of the variables used, including
12 The contract is changed when the volume of trading in the next nearest contract is greater than the

volume of trading in the nearest contract. The volume cross-over method of changing futures contracts

results in one change. The change involves a switch from the March 1998 contract to the June 1998

contract on March 11, 1998. On this day the volume of trading in the March contract was 6312 contracts

and the volume of trading in the June contract was 13,355 contracts.
13 The futures market re-opens at 4.32 pm under the automated pit trading (APT) system. However,

this additional period of trading is not considered because of the lack of data between 4.11 pm and 4.31

pm.
14 This choice is equivalent to selecting a value for the constant, a, in Eq. (32) in Engle and Russell

(1998).



Fig. 1. A non-parametric estimate of periodicity in transaction duration.
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transaction duration, exhibit a strong intraday periodic component. 15 This is exem-

plified in Fig. 1 which shows a non-parametric estimate of the intraday periodicity of

transaction duration. A clear periodicity is apparent with low durations (high inten-

sities) occurring at the beginning and the end of the trading day, and high durations

(low intensities) occurring during the middle of the trading day. To correct for this,
we make use of the method used by Zhang et al. (2001). In particular, we use the

SPLUS function supsmu to compute the daily periodic component, denoted /sn�1
.

The original data is then divided by /sn�1
to obtain a series that does not contain

an intraday periodic component – a series that is referred to as a diurnally adjusted

series. 16

Summary statistics for unadjusted raw and diurnally adjusted transaction dura-

tion are given in Table 1. The mean unadjusted transaction duration is 21.1229 sec-

onds with a standard deviation of 36.8119 seconds. The fact that the standard
deviation is greater than the mean suggests that either the durations are time-varying
15 Tse (1999) also documents this periodicity for several variables observed in the FTSE 100 futures

market.
16 Engle and Russell (1998) use spline functions to calculate /sn�1

. Moreover, they jointly estimate these

functions and the parameters of the ACD model. However, as shown by Engle and Russell (1995), the

two-step approach adopted in this paper produces consistent estimates.



Table 1

Summary statistics

Statistic

N Mean SD Min Max LB test

Panel A: Raw data

Yn 99,399 21.1229 36.8119 0 3742 67511.8010

Bn 99,399 1.6704 1.1306 0.5000 21.0000 92982.4140

Vn 99,399 7.2304 33.8722 1 7444 572.2744

Zn 99,399 0.0002 0.0016 )0.0154 0.0182 1105148.0000

Panel B: Diurnally adjusted data

Yn 99,399 0.9796 1.4679 0.0000 123.6481 49892.5710

Bn 99,399 0.9994 0.6733 0.2825 12.3381 90281.2790

Vn 99,399 1.0017 4.6313 0.1273 1028.0122 574.7592

This table contains summary statistics for transaction duration ðYnÞ, pricing error ðZnÞ, bid–ask spread

ðBnÞ, and the number of contracts traded per transaction ðVnÞ. The column entitled �LB test� gives the

Ljung–Box test statistic and has an associated 95% critical value of 24.996. Transaction duration i

measured in seconds.

17 Table 4 in Appendix A gives the probability density function (pdf) of the exponential and Weibul

distributions. It is clear from these pdf�s that the exponential distribution represents a restricted version o

the Weibull distribution. In particular, the former distribution is equivalent to the latter distribution when

the restriction c ¼ 1 is imposed.
18 See Berndt et al. (1974) for more details.
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s

and/or the durations cannot be adequately described by an exponential distribution.

This is also implied by the unconditional distribution of unadjusted durations given

in Fig. 2. This figure shows that the mode of the distribution is greater than zero, a

result that is not consistent with an exponential distribution. Moreover, the fact that
the mean of the diurnally adjusted durations is greater than their standard deviation

suggests that this result is not due to periodic time-variation. Further evidence of the

inappropriateness of the exponential distribution is given in Fig. 3. This figure shows

the unconditional distribution of diurnally adjusted durations in addition to, an

exponential distribution with a mean matched to the sample mean, and the more

flexible Weibull distribution with parameters matched to the data. 17 It is clear that

the Weibull distribution appears more satisfactory as the mode of such a distribution

can be greater than zero. For this reason we use this distribution in the context of the
various ACD models estimated in the subsequent analysis.
3.3. Model estimation

Six different ACD models are estimated in this paper each of which is estimated

by quasi-maximum likelihood estimation. More specifically, the likelihood function

associated with each of the models is maximized using the BHHH algorithm. 18 For

each model, the dependent variable is diurnally adjusted transaction duration and
the basic assumption given by (1) is maintained with the Weibull distribution

imposed.
l

f



Fig. 2. The distribution of transaction duration.
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The first model considered is based on the basic specification of wn given by (2).

This model (denoted M1) selects the lag structure by grid search over p and q. For
the allowable parameter space p ¼ f1; 2; 3g and q ¼ f1; 2; 3g, we find that p ¼ 1 and

q ¼ 2 delivers the minimum value of the Akaike information criterion, thus M1 is

given by
19 T
wn ¼ a0 þ a1Yn�1 þ b1wn�1 þ b2wn�2: ð14Þ

The estimated parameters together with their associated heteroscedastic-consis-

tent standard errors and the results of various diagnostic tests are given in Table
2. The results indicate that transaction duration is stationary but exhibits a signifi-

cant amount of time dependency as indicated by the significant coefficients on past

expected transaction duration and past transaction duration. 19

To assess the quality of this model a series of diagnostic tests are conducted using

the transformed residuals from the models. Given the relationship between the expo-

nential and Weibull distributions (see Appendix A), the residuals
�̂c
n ¼

Yn
wn

� 	c

ð15Þ
he series is stationary as the coefficients sum to less than unity.
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N. Taylor / Journal of Banking & Finance 28 (2004) 1137–1162 1149
should be i.i.d. and distributed as a unit exponential under the null hypothesis of

model adequacy. 20 The diagnostic tests applied in this paper are designed to test for

these particular characteristics. First, we test the hypothesis that the standard de-

viation of the transformed residuals is equal to unity – as implied by a unit expo-
nential distribution. Using the test described by Engle and Russell (1998), the results

of this test for excess dispersion are reported in Table 2. The results indicate that M1

fails in this respect. To test the i.i.d. characteristic we perform a linear and a non-

linear test for serial correlation. The (linear) Ljung–Box test is applied using up to 15

lags of the dependent variable. The results given in Table 2 indicate that the trans-

formed residuals exhibit a degree of serial dependence that is inconsistent with model

adequacy. However, comparing these results with the extremely large test statistics

obtained when using the actual transaction durations (as given in Table 1) then we
can claim some success. Finally, a non-linear test for serial dependence is conducted

as described in Engle and Russell (1998). Again the results indicate an excessive level
20 The Weibull parameter, c, measures the degree of excess dispersion in the model residuals. Under the

restriction that c ¼ 1, the Weibull distribution is equivalent to the exponential distribution. As such, under

this restriction, the mean and standard deviation of the errors are forced to equate. If this restriction is not

imposed, i.e., the Weibull distribution is used, then the commonly observed feature of excess dispersion is

allowed. Indeed, as shown in Table 2, the estimated value of c is greater than unity implying excess

dispersion in the residuals.



Table 2

Parameter estimates of various ACD models

Model

M1 M2 M3 M4 M5 M6

â0 0.0267 0.0302 0.0316 0.0314 0.0316 0.0318

(0.0016) (0.0015) (0.0007) (0.0014) (0.0012) (0.0006)

â0;1 0.0265 0.0264 0.0267

(0.0018) (0.0014) (0.0003)

â1 0.1159 0.1159 0.1160 0.1166 0.1169 0.1167

(0.0043) (0.0027) (0.0035) (0.0029) (0.0024) (0.0030)

b̂1 0.6810 0.6813 0.6805 0.6658 0.6626 0.6638

(0.0402) (0.0233) (0.0490) (0.0293) (0.0163) (0.0242)

b̂2 0.1771 0.1762 0.1766 0.1909 0.1938 0.1928

(0.0356) (0.0216) (0.0437) (0.0275) (0.0153) (0.0215)

ĥ1 )0.0025 )0.0023 )0.0023 )0.0023 )0.0023

(0.0003) (0.0001) (0.0003) (0.0002) (0.0002)

ĥ2 )0.0005 )0.0005 )0.0005 )0.0005 )0.0005

(0.0002) (0.0002) (0.0002) (0.0002) (0.0002)

x̂1 )1.0338 )0.7947 )0.9660 )0.9583

(0.3526) (0.2069) (0.1344) (0.0951)

x̂1;1 0.0099 0.0010 0.0039

(0.0010) (0.0020) (0.0016)

c 1.0288 1.0291 1.0292 1.0294 1.0294 1.0293

(0.0024) (0.0024) (0.0024) (0.0024) (0.0024) (0.0024)

Log likelihood )0.891328 )0.891103 )0.891050 )0.890979 )0.890975 )0.890988

Residual mean 1.0120 1.0121 1.0122 1.0122 1.0122 1.0122

Residual SD 1.1710 1.1710 1.1706 1.1704 1.1704 1.1705

Dispersion test 41.3806 41.3779 41.2724 41.2357 41.2340 41.2496

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Ljung–Box test 113.5424 110.3866 109.9462 112.2315 112.3545 112.4438

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Non-linear test 2.7944 2.7798 2.7850 2.7675 2.7619 2.7651

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

This table contains the parameter estimates of the ACD models described and denoted in the text (and in

Table 4 in Appendix A) as M1–M6. The numbers in the parentheses are the heteroscedastic-consistent

standard errors associated with the parameter estimates or the p-values associated with diagnostic tests

applied to the transformed residuals from the models.

1150 N. Taylor / Journal of Banking & Finance 28 (2004) 1137–1162
of serial correlation in the transformed residuals. Having applied all three tests it

is somewhat disappointing, though not unusual, to find that all three tests indicate

a rejection of model adequacy. 21

The second model (M2) considered in this paper augments M1 by allowing ex-

planatory variables in (2) as given by (3). The explanatory variables considered in

this paper are motivated by various market microstructure theories. A key implica-

tion of market microstructure theory (see O�Hara, 1995, for a review) is that condi-
21 Engle and Russell (1998), and Zhang et al. (2001) also find, in their studies of the US stock market,

that these tests of model adequacy are rejected.
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tional return volatility is positively related to the extent of information asymme-

try. 22 Given the inverse relationship between transaction duration and instanta-

neous conditional return volatility, this implication is equivalent to stating that

transaction duration and information asymmetry are negatively related. It follows

that a measure of information asymmetry would seem to be a useful explanatory
variable. The problem here is that information asymmetry cannot be readily ob-

served in financial markets. The approach taken in this paper is to include variables

that are theoretically related to the extent of information asymmetry. One such vari-

able is the bid–ask spread. Glosten and Milgrom (1985) and Easley and O�Hara

(1992b) argue that market makers will widen spreads when the extent of information

asymmetry increases. Such action is taken by market makers to lessen the probability

of trading with an informed agent. The second variable included is trading volume.

Inclusion of this variable is motivated by the results of Easley and O�Hara (1987,
1992a) and Lee et al. (1993). They argue that, for a given price, informed traders

have an incentive to trade a larger quantity of shares than non-informed traders. 23

By including these variables, M2 has the following specification:
22 In

marke
23 T

conten

(1993),

results
24 T

ask sp

statisti

is agai

and q
grid se

model

provid

results

trading

These
wn ¼ a0 þ a1Yn�1 þ b1wn�1 þ b2wn�2 þ h1BNsðsn�1Þ
þ h2Vn�1; ð16Þ
where BNsðsn�1Þ
is the bid–ask spread associated with the latest quote available at the

time of the previous trade (hence the time subscript) and Vn�1 is the number of
contracts traded in the previous trade. 24

The results given in Table 2 are in accordance with the above market microstruc-

ture theories. In particular, transaction duration is negatively (and significantly)

related to both the bid–ask spread and trading volume. Hence, given the above ar-

guments, there would appear to be a significant relationship between return volatility

and information asymmetry – a result revealed by transaction duration and proxies

for information asymmetry. As with M1, the diagnostic tests applied to the trans-

formed residuals from M2 indicate model inadequacy.
formation asymmetry measures the amount of informed trading versus non-informed trading in a

t at any point in time.

he relationship between trading volume, the bid–ask spread, and information asymmetry remains a

tious issue in the market microstructure literature; see Karpoff (1987), Stickel and Verrecchia

and Jones and Kaul (1994) for surveys of the various arguments posited in this area. As such, the

of the tests performed in this paper should be treated with some caution.

here remains four features of M2 to be discussed. First, it is necessary to diurnally adjust both bid–

reads and volume using the same methodology used to adjust transaction duration. Summary

cs relating to these market microstructure data are given in Table 1. Second, the selection of p and q
n achieved by way of a grid search. As in M1 (and all subsequent models) we find that using p ¼ 1

¼ 2 gives the best optimization hence the specification given by (16). Third, we conduct a similar

arch over the number of lagged values of the market microstructure variables. In doing this for this

(and all subsequent models), we find that one lagged value of both market microstructure variables

es the best fit as implied by the value of the Akaike information criterion. Fourth, we find that the

are robust to changes in the definition of trading volume. For instance, when the dollar value of

volume is used instead of the number of contracts traded, the results are virtually unchanged.

results are available upon request.
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The final four models estimated in this section all include the above explanatory

variables and past pricing error in their specification. The third model (M3) assumes

that the absolute value of past pricing error is linearly related to expected transaction

duration, that is,
25 T

determ
26 S

an exa
wn ¼ a0 þ a1Yn�1 þ b1wn�1 þ b2wn�2 þ h1BNsðsn�1Þ
þ h2Vn�1 þ x1jZNsðsn�1Þ

j; ð17Þ
where ZNsðsn�1Þ
denotes the latest pricing error observed at the time of the last trade. 25

Given the arguments described in the previous section we expect x1 to be nega-

tive. The results in Table 2 confirm this prediction. The coefficient is significantly less
than zero and takes a value of approximately (negative) unity. The fit of this model

(as given by the value of the log likelihood function) appears to be superior to the

previous models though the diagnostic tests still imply model inadequacy.

In the presence of non-zero trading costs, the assumed linearity between transac-

tion duration and past pricing error becomes questionable and necessitates use of a

non-linear model. The first two non-linear models considered (M4 and M5) are

based on the threshold models given by (10) and (11), (10) and (12), respectively,

but with explanatory variables included,
wn ¼ ð1 � FiðZNsðsn�1Þ
ÞÞða0 þ x1jZNsðsn�1Þ

jÞ þ FiðZNsðsn�1Þ
Þða0;1 þ x1;1jZNsðsn�1Þ

jÞ

þ a1Yn�1 þ b1wn�1 þ b2wn�2 þ h1BNsðsn�1Þ
þ h2Vn�1; ð18Þ
where F1ðZNsðsn�1Þ
Þ is given by (11) and F2ðZNsðsn�1Þ

Þ is given by (12). The parameters c,
c1, and c2 are determined by grid search using values of c, c1, and c2 from 0.001 to

0.003 with increments of 0.0001.

An important feature of such threshold models concerns the estimated value of

the transaction cost parameters c, c1, and c2. In the case of the symmetric threshold

model M4, using the grid search method we find that ĉ equals 0.0021, equivalently 21

basis points. This is reassuring close to estimated transaction costs obtained using
threshold models of the relationship between futures returns and past pricing

error. 26 For instance, using UK data Garrett and Taylor (2001) find that their esti-

mate of transaction costs is 23 basis points. In the case of the asymmetric threshold

model M5, we find that c1 equals )0.0020 and c2 equals 0.0022. This result lends sup-

port to the argument that short-selling the underlying asset is more costly than

taking a long position in the underlying asset.

The second important feature of M4 and M5 concerns the hypothesis associated

with the values of a0, a1, x1, and x1;1. In particular, given the arguments described in
the previous section, we expect a0 to be greater than a0;1 and x1 and x1;1 to be equal

to zero. Recall that we would expect no arbitrage activity when the pricing error is

less than the cost of trading, hence x1 ¼ 0. When profitable opportunities do occur

(jZNsðsn�1Þ
j > c) we expect an increase in arbitrage activity across regimes, hence
he lag structure associated with pricing error in this model (and all subsequent models) is

ined by grid search.

uch models are often referred to as threshold error correction models, see Dwyer et al. (1996) for

mple.



Fig. 4. The relationship between transaction duration and pricing error.
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a0 > a0;1. However, given the bounded nature of transaction duration, we expect the

activity to reach some maximum level within the profit opportunity regime. As such,

increases (decreases) in the pricing error within this regime should have no impact

upon arbitrage activity, hence x1;1 ¼ 0. If this particular prediction is found to exist

then it implies that when profitable opportunities exist, no relationship will exist be-

tween pricing error and transaction duration. This is equivalent to stating that arbi-
trage activity is at its greatest and cannot be increased even when the size of the profit

opportunity increases.

The results given in Table 2 lend some support to the above arguments. For both

models there appears to be an increase in activity when one moves from the no profit

opportunity regime to the profit opportunity regime. In particular, â0 > â0;1, a result

that supports intuition and theory. 27 However, contrary to the above predictions,

there does appear to be some variation in activity within the regimes, in particular,

x̂1 < 0. A graphical description of this variation is provided in Fig. 4. This figure
gives a scatter plot of transaction duration against the first lagged value of pricing

error. It is clear from this diagram that there is variation in activity within regimes

and across regimes. The �within regime� variation is particularly apparent in the

no profit opportunity regime. There appears to be a wide variety of transaction
27 The standard errors associated with these coefficients suggest that the difference is significant.



Fig. 5. The impact of pricing error on expected transaction duration.
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durations and also a negative relationship between mean transaction duration and

absolute pricing error within this regime. 28 To give some idea as to how the esti-

mated parameters capture the latter type of variation, Fig. 5 shows a plot of the
following function against past pricing error:
28 T

activit
GiðZNsðsn�1Þ
Þ ¼ ð1 � FiðZNsðsn�1Þ

ÞÞðâ0 þ x̂1jZNsðsn�1Þ
jÞ

þ FiðZNsðsn�1Þ
Þðâ0;1 þ x̂1;1jZNsðsn�1Þ

jÞ; ð19Þ
where Gið�Þ measures the adjustment in expected duration due to previous pricing

error, that is, adjustment due to arbitrage activity. The function is calculated using
the estimated parameters from M3, M4 and M5. In the case of the former (linear)

model, Fið�Þ is set equal to zero for all pricing error values. One can see from this

figure that, as â0 > â0;1, there is an abrupt decrease in expected transaction duration

when one switches to the profit opportunity regime – a feature that cannot be picked

up by the linear model. One can also see that, as x̂1;1 � 0, there is very little variation

in expected transaction duration in the profit opportunity regime. By contrast, as

x̂1 < 0, there appears to be a large degree of variation in expected transaction

duration in the no profit opportunity regime. This may be because arbitragers face
he former type of variation is unsurprising given that there could be substantial clustering of trading

y due to the clustered nature of information arrival when no arbitrage profits are available.
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heterogeneous trading costs. To investigate this possibility we estimate an alternative

type of threshold model.

The final model (M6) assumes the same specification for wn as given by M5 but

differs by allowing FiðZNsðsn�1Þ
Þ to be given by (13), with d determined by grid search

over an appropriate parameter space. The resulting coefficient estimates are given in
Table 2. These estimates are very similar to the M4 and M5 estimates. However, the

models differ in terms of the mode of transition across states. This can be readily ob-

served in Fig. 5 which plots the smooth threshold adjustment function Gið�Þ against

past pricing error. The shape of the function suggests that transaction cost hetero-

geneity is most apparent for arbitragers facing small transaction costs. When the

profit opportunity becomes large the heterogeneity becomes negligible with activity

reaching a maximum asymptotic level. One can also see from this figure that the M4

and M5 coefficients also pick up this effect but in a linear piecewise fashion as op-
posed to the continuous non-linear nature of M6. This latter model also has appeal

when one compares the shape of the M6 activity function given in Fig. 5 with the

scatter plot given in Fig. 4. There is clearly a correspondence between the functional

dependence between expected transaction duration and past pricing error as implied

by M6 and the actual dependence given by the data.

In terms of the fit of M4, M5 and M6, the results suggest that they offer a superior

representation of the data over previous models. However, diagnostic tests of model

adequacy fail to support these models. A more detailed analysis of the universal fail-
ure of the models in this respect is given in the following subsection.

Before proceeding to the next subsection it is worth considering the implications

of the estimated models in terms of the pricing efficiency of the FTSE 100 futures

market. The evidence presented in the paper shows that there is rapid adjustment

of prices to information arrival. In this paper, �adjustment� is measured via the trad-

ing process with �information� defined as pricing error. Figs. 4 and 5 perhaps best il-

lustrate this compatibility with market efficiency. Both figures clearly show that in

the profit opportunity regime there is a very short period of time between price im-
pact trades. In other words, prices are changing rapidly within this regime. By con-

trast, in the no profit opportunity regime prices are less rapidly adjusting. This is

to be expected given the difference in information flow over the two regimes.

3.4. Model adequacy

The most disappointing feature of the models considered in this paper is their fail-

ure to pass various diagnostic tests of model adequacy. Such inadequacy is not uni-

que to the dataset used in this paper. Both Engle and Russell (1998) and Zhang et al.

(2001) find similar results when using data covering an individual stock listed on the

New York Stock Exchange. Efforts were made by these authors to correct for this

failure. For instance, Zhang et al. (2001) introduce an alternative error distribution
and perform a subperiod analysis in an attempt to provide adequate models of trans-

action duration. While such modifications produce some success, the underlying re-

sult from such papers is that passing tests of model adequacy remains an issue in the

context of ACD models. An alternative approach to model adequacy is taken in this
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paper. Rather than modify the models and apply the usual diagnostic tests, we con-

sider an alternative approach to model performance.

Given the importance of accurate forecasts of the volatility of asset returns in

areas such as risk management and option pricing, it seems reasonable to assess

model performance via a comparison of forecasting ability. In conducting such a
comparison we are explicitly conceding the fact that the �best� model may still be �in-

adequate� in terms of model misspecification. However, as a universal set of currently

available ACD models is used, the approach will give some indication as to which

model most accurately represents the data and, hence, is of most importance to users

of financial markets.

The six models considered in the previous subsection are re-estimated using the

first half of the dataset. 29 The estimated coefficients and the second half of the dataset

are then used to generate time-consistent 1-step ahead forecasts of transaction dura-
tion. These forecasts are then compared to realized transaction duration observed in

the second half of the sample. The mean squared forecast errors associated with these

forecasts are given in Table 3. 30 In addition to the six models considered in the pre-

vious section, we also consider a na€ıve model where forecasts are set equal to the mean

transaction duration observed in the first half of the dataset – this model is henceforth

denoted M0. The results indicate that M0 is not surprisingly the poorest of the models

considered. The best model appears to be Ml followed by M2 and M6.

To formally test the comparative accuracy of the model-based forecasts we make
use of the asymptotic test introduced by Diebold and Mariano (1995). This test al-

lows use of an arbitrary loss function instead of the usual squared forecast error loss,

and is robust to non-zero mean forecast errors, non-normally distributed forecast er-

rors, and serially correlated forecast errors. In the current application it is the robust-

ness of the Diebold and Mariano statistic to the non-normality assumption that is

most attractive. Indeed, when the forecast errors are tested for normality the null

is rejected at the 1% significance level on every occasion. 31

Diebold and Mariano show that the following test statistic is (asymptotically)
normally distributed with zero mean and unit variance:
29 D

consid

estima

to tho
30 S

availab
31 T
S1 ¼
�dffiffiffiffiffiffiffiffiffiffiffi

2pf̂d ð0Þ
T

q ; ð20Þ
where
�d ¼ 1

T

XT
t¼1

gðetÞ
�

� gðe0tÞ



ð21Þ
etails of the estimated models are available upon request. Other subsets of the dataset are

ered. For instance, we use the first quarter and the first three quarters of the dataset in the

tion section of the exercise. The results obtained using such sample periods produce similar results

se presented in this paper. These results are also available upon request.

imilar results are obtained when mean absolute forecast errors are considered. These results are

le upon request.

hese results are available upon request.



Table 3

Testing the statistical significance of duration forecasts

Model

M0 M1 M2 M3 M4 M5 M6

Panel A: symmetric quadratic loss

MSFE 2.6510 2.1535 2.1553 2.1608 2.1599 2.1582 2.1571

D–M test M0 7.4481 7.5243 7.5042 7.5072 7.5786 7.5375

M1 )7.4481 )1.8208 )4.4492 )4.0385 )2.2484 )2.4988

M2 )7.5243 1.8208 )7.8862 )6.4761 )2.2642 )3.1174

M3 )7.5042 4.4492 7.8862 2.3732 2.6162 6.9671

M4 )7.5072 4.0385 6.4761 )2.3732 1.6485 7.5835

M5 )7.5786 2.2484 2.2642 )2.6162 )1.6485 1.1927

M6 )7.5375 2.4988 3.1174 )6.9671 )7.5835 )1.1927

D–M test

score

0 5 5 1 2 2 3

Panel B: asymmetric linex loss

D–M test

score

q ¼ 0:02 0 3 3 1 2 3 3

q ¼ 0:04 0 3 3 1 2 4 3

q ¼ 0:06 0 2 4 1 2 6 3

q ¼ 0:08 0 1 4 1 2 6 4

q ¼ 0:10 0 1 4 1 2 6 4

Panel A of this table gives the mean squared forecasts errors (MSFE), the test statistics associated with the

Diebold–Mariano test of comparable forecast performance and the associated number of successful

forecast comparisons achieved at the 5% significance level. Panel B of this table gives the number of

successful forecast performance comparisons under the (asymmetric) Linex loss function at the 5% sig-

nificance level. For descriptions of models, M0–M6, see Table 4 in Appendix A.
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is the sample loss differential and f̂dð0Þ is a consistent estimate of the spectral density

of the loss differential at frequency zero,
32 R
fdð0Þ ¼
1

2p

X1
s¼�1

cdðsÞ; ð22Þ
where et is the h-step ahead forecast error associated with one particular model, e0t is
the h-step ahead forecast error associated with a competing model, gð�Þ is the loss

function, cdðsÞ ¼ E½ðdt � lÞðdt�s � lÞ� is the autocovariance of the loss differential at

displacement s, and l, is the population mean loss differential. Following Diebold

and Mariano, we use a uniform lag window of size h� 1 to estimate fdð0Þ. The

loss functions used are the squared function (MSFE) and the absolute function

(MAFE) though only results pertaining to the former function are presented in the

paper. 32

A summary of the results obtained when the Diebold and Mariano test is per-
formed on all available forecasts is given in Table 3. We report the test statistics as-

sociated with the Diebold–Mariano test where each model-based set of forecasts are
esults associated with the latter function are available upon request.
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compared with each other. In addition, we report the number of times for which one

particular model-based set of forecasts is significantly better (at the 5% level) than

the other model-based forecasts. Thus for each model there will be six such tests per-

formed. The results indicate that M1 and M2 each successfully beat the other models

on five occasions. The non-linear models, M4–M6, are less successful. Of these mod-
els the most successful is M6 with three successes.

In using a symmetric loss function we are explicitly assuming that positive and

negative forecast errors (of the same absolute magnitude) receive equal weight in

the loss function. In the current context this may not be the case. Both Brailsford

and Faff (1996) and Bystrom (2000) argue that underprediction of return volatility

should be more heavily penalized than overprediction. The argument is demon-

strated by consideration of a seller of a call option. If such a trader underpredicts

the underlying asset return volatility then there will be a downward bias in the esti-
mate of the call price. As such, the trader will be prepared to accept less for their op-

tion than it is actually worth. The need to protect against underprediction can also

be demonstrated in the context of the VaR methodology. It is obvious in this context

that underprediction of return volatility is to be avoided if the solvency of the port-

folio owner is to be maintained. Therefore, as the above ACD models can be inter-

preted as models of the inverse of instantaneous conditional return volatility then

some form of asymmetric loss function is required.

A commonly used asymmetric loss function is the Linex loss function intro-
duced by Varian (1974) and used by Zellner (1986). It is given by the following

expression:
gðetÞ ¼ exp½qet� � qet � 1: ð23Þ
When q > 0 (q < 0), positive (negative) forecast errors are weighted more heav-

ily than negative (positive) forecast errors. Another important feature of this loss

function is that the function becomes asymptotically equivalent to the symmetric

quadratic loss function when q ! 0. Given the above arguments we allow

q ¼ f0:02; 0:04; 0:06; 0:08; 0:10g. Note that we are penalizing overprediction
more heavily than underprediction. This may at first appear to contradict the

above arguments. However, recall that the forecasts of transaction duration gen-

erated in this paper are essentially forecasts of the inverse of instantaneous condi-

tional return volatility. As such, the asymmetry of the loss function is reversed

accordingly.

The Diebold–Mariano test is applied using the Linex loss function for all combi-

nations of possible comparisons. The results are given in Table 3. Not surprisingly,

when q is close to zero, the number of successes closely resembles the results obtained
using the symmetric quadratic loss function. However, as q becomes large and,

hence, the degree of asymmetry increases, the number of successes for each model

changes. Most notably, the asymmetric threshold model M5 becomes increasingly

successful. Indeed, for qP 0:06 this model achieves the maximum of six successes

and can clearly be referred to as the dominant model under these conditions.
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4. Concluding remarks

This paper has shown that trading activity on the FTSE 100 futures market is de-

termined by several factors. First, there exists a strong time dependent component in

intensity. Thus, the observed clustering in trading activity is greater than that pre-
dicted by an independent process. Second, three explanatory variables play a key

role in explaining levels of trading activity. The first two of these effects are market

microstructure in nature. In particular, we find that bid–ask spread and trading vol-

ume have a negative effect on transaction duration. The transition mechanism used

to explain these results is based on the argument that there is a positive relationship

between return volatility and these proxies for the degree of information asymmetry

in the market. Given the negative relationship between return volatility and the def-

inition of transaction duration used in this paper, the results are compatible with var-
ious market microstructure theories. While these market microstructure effects have

been investigated in previous studies of trading activity, the third of these effects has

not. In this paper we have argued that arbitrager behaviour will have a significant

impact upon trading activity. In particular, we argue that arbitrager trading activity

will be a function of the magnitude of the mispricing between spot and futures prices.

These arguments are born out by the evidence presented in this paper which shows

that the greater the profit opportunity, as implied by non-zero pricing error, the

greater the intensity of trading activity. The nature of this dependency is also exam-
ined and found to be non-linear in nature. In particular, we find that trading activity

dramatically increases when the size of the profit opportunity available to arbitragers

exceeds the costs of trading the futures contract and the associated underlying asset.

In terms of the trading costs faced by arbitragers, we find evidence to suggest that

these costs are different depending on the nature of the trade required and may differ

across arbitragers.

An important aspect of this paper is that only transactions that have a non-zero

price impact are considered in the analysis. As such, the models considered can be
interpreted as models of (the inverse of) return volatility. Given the importance of

accurate forecasts of return volatility in areas of risk management and option pric-

ing, it is of some importance that the forecasting performance of the models was as-

sessed. The results indicate that, under certain conditions, the non-linear ACD

models developed in this paper provide more accurate forecasts of transaction dura-

tion than the conventional linear ACD models. It is the success of the former models

that is to be exploited in future research. In particular, it would be a useful exercise

to compare the performance of non-linear ACD models with conventional models
of return volatility such as ARCH models. Such research would throw light on

what factors determine return volatility over high frequencies.
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Appendix A. Notation and definitions

Table 4 contains definitions of all variables and parameters (Panel A), presents all

models considered (Panel B), gives the specifications of the transition functions used

(Panel C), and lists all distributions considered (Panel D).
Table 4

Summary information

Notation Definition

Panel A: Variable definitions

Yn The time between �price impact� trades (transaction duration).

BNsðsn Þ The difference between the bid and ask quote (bid–ask spread).

Vn The number of contracts traded per transaction (trading volume).

ZNsðsn Þ The difference between the theoretical and market price of the futures

contract (pricing error).

wn The conditional expectation of transaction duration.

NsðsnÞ The number of s-type events that have occurred by time sn.
/sn The daily periodic component.

Panel B: Model specifications

M0 wn ¼ a0.

M1 wn ¼ a0 þ a1Yn�1 þ b1wn�1 þ b2wn�2.

M2 wn ¼ a0 þ a1Yn�1 þ b1wn�1 þ b2wn�2 þ h1BNsðsn�1 Þ
þ h2Vn�1.

M3 wn ¼ a0 þ a1Yn�1 þ b1wn�1 þ b2wn�2 þ h1BNsðsn�1 Þ
þ h2Vn�1 þ x1jZNsðsn�1Þ

j.
M4 wn ¼ ð1 � F1ðZNsðsn�1 Þ

ÞÞða0 þ x1jZNsðsn�1Þ
jÞ þ F1ðZNsðsn�1 Þ

Þða0;1 þ x1;1jZNsðsn�1 Þ
jÞ.

þa1Yn�1 þ b1wn�1 þ b2wn�2 þ h1BNsðsn�1 Þ
þ h2Vn�1.

M5 wn ¼ ð1 � F2ðZNsðsn�1 Þ
ÞÞða0 þ x1jZNsðsn�1Þ

jÞ þ F2ðZNsðsn�1 Þ
Þða0;1 þ x1;1jZNsðsn�1 Þ

jÞ.
þa1Yn�1 þ b1wn�1 þ b2wn�2 þ h1BNsðsn�1 Þ

þ h2Vn�1.

M6 wn ¼ ð1 � F3ðZNsðsn�1 Þ
ÞÞða0 þ x1jZNsðsn�1Þ

jÞ þ F3ðZNsðsn�1 Þ
Þða0;1 þ x1;1jZNsðsn�1 Þ

jÞ
þa1Yn�1 þ b1wn�1 þ b2wn�2 þ h1BNsðsn�1 Þ

þ h2Vn�1.

Panel C: Transition function specifications

F1ðZNsðsn�1ÞÞ F1ðZNsðsn�1ÞÞ ¼
0 if jZNsðsn�1Þj6 c;
1 otherwise;

�
where c is the symmetric threshold transaction cost bound parameter.

F2ðZNsðsn�1ÞÞ F2ðZNsðsn�1ÞÞ ¼
0 if � c1 6 jZNsðsn�1Þj6 c2;
1 otherwise;

�
where c1 and c2 are the asymmetric threshold transaction cost bound

parameters.

F3ðZNsðsn�1ÞÞ F3ðZNsðsn�1ÞÞ ¼ 1 � exp �dZ2
Nsðsn�1Þ

h i
,

where d is the smooth threshold adjustment parameter.

Panel D: Distribution specifications

Yn=wn ¼ �n � i:i:d:DðjÞ Exponential DðlÞ : f ð�nÞ ¼ ð1
lÞ exp½� �n

l �, �n P 0, l > 0.

Weibull Dðl; cÞ : f ð�nÞ ¼ ðc
lÞð

�n
lÞ

c�1
exp½�ð�nlÞ

c�, �n P 0, l > 0, c > 0.
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